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ture with respect to the massive principal series we previously studied (hep-th/0606119).

When considering the complementary series, we make use of a non-trivial scalar product in

order to get local expressions in the position representation. Based on these, we construct

a family of covariant canonical fields parametrized by SU(1, 1)/U(1). Each of these cor-

respond to the dS invariant alpha-vacua. The behavior of the modes at asymptotic times

brings another difficulty as it is incompatible with the usual definition of the in and out

vacua. We propose a generalized notion of these vacua which reduces to the usual con-

formal vacuum in the conformally massless limit. When considering the massless discrete

series we find that no covariant field obeys the canonical commutation relations. To further

analyze this singular case, we consider the massless limit of the complementary scalar fields

we previously found. We obtain canonical fields with a deformed representation by zero

modes. The zero modes have a dS invariant vacuum with singular norm. We propose a

regularization by a compactification of the scalar field and a dS invariant definition of the

vertex operators. The resulting two-point functions are dS invariant and have a universal

logarithmic infrared divergence.
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1. Introduction

Since the works of Dirac and Wigner [1], particles in flat spacetime can be considered as

unitary irreducible representations (UIR) of the Poincaré group. Moreover, free quantum
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field operators Φ(x) can be constructed in a unique way from these UIR [2, 3]. The key

property in this construction is the covariance of the field operator:

Φ(x′) = U(Λ)Φ(x)U †(Λ), (1.1)

where we only consider scalar fields and x′ is the image of x under the Poincaré transfor-

mation Λ.

In a previous work [4], hereafter cited as I, we presented an algebraic construction of

quantum field theories (QFT) on the n-dimensional de Sitter space dSn based on the UIRs

of the de Sitter isometry group SO0(1, n). The UIR were first analyzed by Bargmann [5] for

n = 2, Gelfand and Naimark for n = 3 [6], Thomas, Newton and Dixmier for n = 4 [7 – 9].

Generalization to all n were studied in [10 – 13]. Starting with an UIR, we first construct the

corresponding Fock space. The vacuum is the trivial representation, the one-particle states

are elements of the UIR, and the n-particle states are the symmetrized tensor product

of n copies of the UIR. The dS group has an induced representation U on this Fock

space. We then define a free local field operator by a linear superposition of creation

and annihilation operators subject to the covariance property (1.1) with Λ now being an

element of SO0(1, n). The scalar representations are of three types characterized by the

eigenvalue of the quadratic Casimir operator C: the principal series has C ≤ −(n − 1)2/4,

the complementary series has −(n − 1)2/4 ≤ C < 0 and finally the discrete series has

C = k(k + n − 1) with k ∈ Z≥0 . The eigenvalue of C can be interpreted physically as

the minus mass squared: C = −M2 (or more generally with a curvature coupling term,

C = −(M2+ξ R)). In I, we studied the principal series and we showed that the construction

gives rise to a family of canonical fields parametrized by a SU(1, 1)/U(1) moduli space.

In the usual field theoretical treatment, this moduli space corresponds to that of alpha-

vacua [14]. In our approach, the moduli space stems from a first order differential equation

expressing the invariance of the field operator under transformations leaving fixed a given

point in dS space. This first order differential equation turns out to be singular (on the

event horizons centered about that point) thereby giving rise to two independent complex

solutions. Furthermore, we showed that the Klein-Gordon equation and the canonical

commutation relations are consequences of the covariance requirement.

The aim of the present work is to extend this approach to the other two series. Con-

cerning the complementary series, the main difference with respect to the principal one is

that the realization of the representation with functions on the sphere is no more unitary

with respect to the standard L2 scalar product. This realization was very convenient in I

because the generators are local differential operators and the finite transformations easy

to determine. The unitarity of the complementary series can be recovered by the use of a

different scalar product which we first determine. The construction then follows the same

general line as before leading once again to a family of free field operators labeled by the

moduli space SU(1, 1)/U(1). An important physical difference with respect to the prin-

cipal series exists however, it concerns the different behavior of the field operators in the

asymptotic past and future. This forbids the usual definition of the in and out Mottola-

Schwinger vacua [15]. We propose a new definition of asymptotic vacua by appropriately
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factorizing the field operator and choosing the time coordinate. Our construction gener-

alizes the conformal in and out vacua valid for the conformally coupled scalar fields with

C = −n(n − 2)/4 .

As of the discrete series, we consider only the physically interesting case of the first

discrete series with C = 0, i.e. the massless case. Other discrete series correspond to the

tachyonic fields which are physically less relevant (see [16] for an example). The massless

scalar case is peculiar in the usual field theoretic approach since the dS invariant two-point

function diverges in the limit M → 0 [17]. This was interpreted as there is no dS invariant

vacuum in the massless case [14] and the vacuum states breaking dS group but preserving

its subgroup were considered in [14, 18 – 20]. It was suggested that this divergence is

related to the additional symmetry which the massless theory acquires: the symmetry

under the constant addition on the field operator. In order to implement this symmetry

appropriately, the BRST quantization in the Euclidean dS space [21] and the Gupta-Bleuler

quantization [22] was studied and also the invariant observables under this symmetry rather

than field operators were considered: difference of fields in different spacetime points [20].

In the approach of the present paper, the construction for the massless discrete series leads

to quite different results from that of complementary series. The field operator so obtained

turns out to be unique up to an overall complex constant and more importantly, it does

not satisfy the canonical commutation relations. This QFT gives physically unacceptable

effects: its coupling to an Unruh detector [23] leads to an infinite temperature. We then

explore the limit towards the massless field starting from the canonical massive fields of

the complementary series. The limit gives rise a Fock space which is larger than that

obtained from the discrete UIR, the additional part being due to the zero modes. The

representation is also deformed by the zero modes in a way which we explicitly determine.

The zero modes however render the vacuum not normalizable. We then cure this problem by

compactifying the scalar field on a circle Φ = Φ+2πL. In order to get observables invariant

under this rotation, we consider a vertex operator which is a dS invariant regularization

of exp(iΦ/L). We compute its two-point function and show that it presents a universal

logarithmic infrared divergence for all dimensions. We thus recover in dS invariant way

the results of [24] where these divergences were shown to lead to the restoration of broken

symmetries.

The plan of the paper is as follows. From section 2 to section 5, we study the two

dimensional case. In section 6, we generalize the results to arbitrary dimensions. In section

2, we describe the representations and the associated scalar product. We also examine

the massless limit from the complementary series. In section 3, we construct the scalar

field of the complementary series and determine the Bunch-Davies vacuum [25] and our

generalization of the in and out vacua. Section 4 is devoted to the massless case and section

5 to the massless limit of the scalar field of the complementary series. Several appendices

contain technical details used in the text.

2. The SO0(1,2) group

We first concentrate on the two-dimensional de Sitter space dS2 and the starting point of

– 3 –
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our approach is the UIR of the SO0(1, 2) group, the group of linear transformations with

determinant 1 which leaves −(X0)2 + (X1)2 + (X3)2 invariant and which is connected to

the identity. This is the isometry group of dS2. The arbitrary dimensional case, SO0(1, n)

will be treated at the end of the paper. Let J be the generator of the rotation subgroup

and K1 and K2 the two boosts. They verify the commutation relations:

[J , K1 ] = iK2 , [J , K2 ] = −iK1 , [K1, K2 ] = −iJ . (2.1)

The quadratic Casimir operator

C = J 2 −K2
1 −K2

2 , (2.2)

commutes with all the generators and is constant on irreducible representation.

Bargmann [5] classified the UIR according to the value of C and the eigenvalues m of

J :

(i) the principal series with C ≤ −1
4 , m = 0,±1, . . . or m = ±1

2 ,±3
2 , . . . ;

(ii) the complementary series with −1
4 < C < 0 and m = 0,±1, . . . ;

(iii) the two discrete series D±
k , with C = k(k + 1) where k is a non-negative integer or

half integer, and with ±m = k +1, k +2, . . . where the + (−) sign characterizing D+
k

(D−
k )

In all these cases, writing C = s2 − 1/4, the three generators can be represented in the

basis of the eigenstates of J as

J |m) = m |m) , K± |m) = ±i

{

m ±
(

s +
1

2

)}

|m ± 1) . (2.3)

where the raising and lowering operators are defined as K± = K1 ± iK2. We have adopted

these expressions because the action of K± is linear in m. Therefore, they give rise to first

order differential operators in the position representation, that is when acting on functions

on the circle. Indeed, defining

|φ) =
1√
2π

∞
∑

m=−∞

e−imφ |m) , (2.4)

the action of the generators on an arbitrary ket |Ψ) is given by

(φ| J Ψ) = −i
d

dφ
(φ|Ψ) , (2.5)

(φ| K1 Ψ) = i

{

sinφ
d

dφ
+

(

s +
1

2

)

cos φ

}

(φ|Ψ) = i

[

1

2

{

sin φ,
d

dφ

}

− s cos φ

]

(φ|Ψ) ,

(φ| K2 Ψ) = i

{

− cos φ
d

dφ
+

(

s +
1

2

)

sin φ

}

(φ|Ψ) = −i

[

1

2

{

cos φ,
d

dφ

}

+ s sinφ

]

(φ|Ψ) .
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In the sequel, it will be also useful to have the action of finite transformations. They are

given by

(φ| eiθJ Ψ) = (φ + θ|Ψ) ,

(φ| eiρK1 Ψ) = (cosh ρ + sinh ρ cos φ)−s−1/2 (φ1|Ψ) ,

(φ| eiλK2 Ψ) = (cosh λ + sinh λ sinφ)−s−1/2 (φ2|Ψ) . (2.6)

where

cos φ1 =
cos φ cosh ρ + sinh ρ

cosh ρ + sinh ρ cos φ
, sin φ1 =

sin φ

cosh ρ + sinh ρ cos φ
,

cos φ2 =
cos φ

cosh λ + sinhλ sin φ
, sin φ2 =

sin φ cosh λ + sinh λ

cosh λ + sinhλ sin φ
. (2.7)

The choice adopted in eq. (2.3) yields the above simple expressions for the finite transfor-

mations and will be easily generalized to higher dimensions. However, it should be noticed

that for the discrete and the complementary representations, the generators are not Her-

mitian with respect to the standard L2 scalar product, we denote (·|·), for the discrete

and the complementary representations. In fact, denoting U (s) the representation (2.3) for

some s of three generators of SO0(1, 2), we have

(Ψ| U (s) Ψ′) = (U (−s∗) Ψ|Ψ′) , (2.8)

where U (s) designates any of three generators of SO0(1, 2) in the representation (2.3). Hence

the U (s) are Hermitian with respect to the L2 scalar product only if s is purely imaginary,

e.g. for the principal series. For the other two series we should define a new scalar product

with respect to which the generators are Hermitian.

2.1 The complementary series

The complementary series is obtained by taking s real and belonging to the interval −1/2 <

s < 1/2 . It turns out that s and −s are equivalent representations because there exists an

intertwiner Q such that

Q U (s) = U (−s) Q . (2.9)

This intertwiner defines a new scalar product, denoted 〈·|·〉, by

〈Ψ |Ψ′〉 ≡ (Ψ |QΨ′) , (2.10)

and with respect to which, the generators are Hermitian:

〈Ψ | U (s) Ψ′〉 = (Ψ |Q U (s) Ψ′) = (Ψ | U (−s) QΨ′)

= (U (s) Ψ |QΨ′) = 〈 U (s) Ψ |Ψ′〉 . (2.11)

From the the action of the generators and the definition of Q we deduce the scalar product

of states |m) and |n), i.e. the matrix element of Q, as

〈m|n〉 = (m|Qn) = 〈m0|m0〉
Γ

(

m0 + s + 1
2

)

Γ
(

m0 − s + 1
2

)

Γ
(

m − s + 1
2

)

Γ
(

m + s + 1
2

) δm,n ≡ Qmδm,n . (2.12)
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For −1/2 < s < 1/2, this scalar product is positive and regular for all states |m) . For

0 < s < 1/2 the scalar product of two position eigenvectors can be obtained by Fourier

transformation. One finds [5]

Q(φ − φ′) ≡ (φ|Qφ′) =
1

2π

∞
∑

m=−∞

eim(φ−φ′) Qm

=
〈m0|m0〉√

4π

Γ
(

m0 + s + 1
2

)

Γ
(

m0 − s + 1
2

)

Γ
(

−s + 1
2

)

Γ(s)

(

sin2 (φ − φ′)

2

)s− 1
2
. (2.13)

This can be also obtained from the following differential equation:

(φ|
(

K(−s)
+ Q − QK(s)

+

)

φ′) =

{

sin
ϕ

2

d

dϕ
−

(

s − 1

2

)

cos
ϕ

2

}

Q(ϕ) = 0 , ϕ = φ − φ′ .

(2.14)

In the region −1/2 < s < 0, the above expression is singular as can be seen from the

behavior of the last factor in the coincident point limit. To our knowledge this case has

not been studied in the literature. To obtain an expression valid for all values of s in the

complementary series we should consider the above kernel Q(φ−φ′) as a distribution. This

distribution is given by

Q(φ − φ′) = 〈m0|m0〉
Γ

(

m0 + s + 1
2

)

Γ
(

m0 − s + 1
2

)

Γ
(

−s + 1
2

)

(4π)
1
2 Γ(s)

×

× lim
ǫ→0+

[

(

sin2 (φ − φ′)

2
+

ǫ

2s

)(

sin2 (φ − φ′)

2
+ ǫ

)s− 3
2

]

. (2.15)

This expression is now valid for −1/2 < s < 1/2 and reduces to eq. (2.13) for 0 < s < 1/2.

Furthermore, when s → 0 it reduces, as it should, to

Q(φ − φ′) = 〈m0|m0〉 δ(φ − φ′) , (2.16)

which is the L2 kernel of the principal series. As we shall see below, this generalization of

Q to negative values of s will be useful to study the massless case as a limiting procedure

from the complementary series.

2.2 The massless case

The massless representations have a vanishing Casimir, i.e. s2 = 1/4, and constitute the

first discrete representations D±
k=0 in the classification of UIR. The positive series D+

0 has

only states with positive m whereas the negative series D−
0 with only negative m. Any

state |Ψ) in each series D±
0 can thus be expanded as

|Ψ) =

∞
∑

m=1

c±m | ± m) . (2.17)

As can be seen from eq. (2.3) the expressions greatly simplify for s = −1/2:

J |m) = m |m) , K± |m) = ±im |m ± 1) . (2.18)

– 6 –
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They are Hermitian provided that the scalar product for D±
0 is given by

〈n|m〉 =
〈m±|m±〉

m±
m δm,n , (2.19)

where m+(resp. m−) is an arbitrary positive(resp. negative) integer. It should be noticed

that the zero mode |m = 0) ≡ iK∓|± 1) has vanishing norm and so does not belong to the

UIRs of D±
0 .

To be able to use the position representation of the generators acting on D±
0 , we

consider the (larger) Hilbert space formed by the L2 functions on the circle. This space

includes all modes m and allows the following decomposition of any element of D±
0 as

Ψ(φ) ≡ (φ|Ψ) =

∞
∑

m=1

e±imφ c±m . (2.20)

In the position basis, the scalar product between two elements of D±
0 is

〈Ψ|Ψ′〉 = −i
〈m±|m±〉

m±

∫ 2π

0
dφ (Ψ|φ)

d

dφ
(φ|Ψ′) . (2.21)

In this enlarged Hilbert space, the action of the three generators is given by

(φ| J Ψ) = −i
d

dφ
(φ|Ψ) , (φ| K1 Ψ) = i sin φ

d

dφ
(φ|Ψ) , (φ| K2 Ψ) = −i cos φ

d

dφ
(φ|Ψ) .

(2.22)

2.3 The massless limit

The limit s → −1/2 of the complementary series leads at a first sight to three irreducible

representations: D+
0 with m ≥ 1, D−

0 , with m ≤ −1 and the trivial representation with

m = 0 . In fact, writing s = −1/2 + ε, the action of K∓ on the normalized states with

m = ±1 is

K∓
| ± 1)

√

〈±1| ± 1〉
= −i

√
ε

|0)
√

〈0|0〉
, K±

|0)
√

〈0|0〉
= ±i

√
ε

| ± 1)
√

〈±1| ± 1〉
. (2.23)

These equations shows that the representation splits indeed into the three irreducible repre-

sentations mentioned above. The scalar product however has a singular limit since eq. (2.12)

gives

〈0|0〉 =
〈m0|m0〉

m0
ε + O(ε2) . (2.24)

The zero mode |0) has thus a vanishing norm in the limit s → −1/2 , thereby recovering

the results of the discrete series obtained in section 2.2.

3. Scalar field from complementary series

Let HΩ be the one-dimensional Hilbert space associated with the trivial representation |Ω)

and H the Hilbert space carrying the UIR of the preceding section. The Fock space F is

constructed from these two spaces in the following manner

F = HΩ ⊕
∞

⊕

n=1

H⊗symn , (3.1)

– 7 –
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where the nth term H⊗symn is the representation obtained by taking the symmetrized tensor

product of n copies of the UIR. Then, the creation and annihilation operators are defined

as

a†m|Ω) = |m) , am|Ω) = 0 ,

[ am , a†n ] = Qm δm,n , (3.2)

where Qm is defined in eq. (2.12). The above relations can be used to define the creation

and annihilation operators of the position basis:

a†(φ)|Ω) = |φ) , a(φ)|Ω) = 0 ,

[ a(φ) , a†(φ′) ] = Q(φ − φ′) . (3.3)

The (reducible) representation of the dS group on the Fock space is obtained from the

irreducible representation by

U =
∑

m,n

Umn a†m an , (3.4)

with Umn = 〈m| U |n〉/QmQn = (m| U n)/Qn. Each n-particle sector of the Fock space is

thus kept invariant under the action of the group transformations.

Using these operators, we shall now construct a local field, Φ(x) on dS space. We shall

use the global coordinate system (t, θ), where t is the time coordinate and varies from −∞
to +∞ and θ is an angle coordinate. In this coordinate system, the metric is

ds2 = −dt2 + cosh2 t dθ2. (3.5)

Later we shall also use the conformal time for which

ds2 = sin−2η (−dη2 + dθ2) . (3.6)

The point with global coordinates (0, 0) is transported to (t, θ) by the following ordered

sequence: first one acts with a boost generated by K1 with parameter t to reach (t, 0), and

then one reaches (t, θ) by a rotation with angle θ. Notice also that the point (0, 0) is left

invariant by the boost generated by K2.

Taking into account the non-commuting character of J and K1 we have the central

equation

Φ(t, θ) = e−iθJeitK1 Φ(0, 0) e−itK1eiθJ . (3.7)

It determines the field operator Φ(t, θ) from the operator Φ(0, 0). The other important

equation follows from the fact that Φ(0, 0) must be invariant under transformations that

leave the point (0, 0) invariant. In two dimensions only K2 leaves (0, 0) invariant. Hence

we impose

[K2, Φ(0, 0) ] = 0 . (3.8)

Eq. (3.7) and eq. (3.8) imply that Φ(t, θ) obeys the Klein-Gordon equation with a mass

squared term given by M2 = −s2 + 1/4, see I for the proof. Besides covariance, we also

– 8 –
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impose that our field is free of interactions. Hence we write it as a linear combination of

creation and annihilation operators. In the Fourier basis we have

Φ(0, 0) =
1√
2π

∞
∑

m=−∞

cm a†m + c∗m am . (3.9)

The field operator is thus fully determined by the c-number constants cm . The crucial

point is that eq. (3.8) is not satisfied by arbitrary superpositions. Indeed imposing eq. (3.8)

gives the following conditions:

cm+2

cm
= −m + s + 1

2

m − s + 3
2

=
γm+2

γm
, (3.10)

with

γm = eimπ
2
Γ

(

m
2 + s

2 + 1
4

)

Γ
(

m
2 − s

2 + 3
4

) (3.11)

The solution here depends on two complex constants c0 and c1. These determine all other

coefficients by

c2m = c0
γ2m

γ0
, c2m+1 = c1

γ2m+1

γ1
. (3.12)

In order to find how to interpret the set of covariant field operators characterized by

c0 and c1, it is necessary to determine how these fields evolve in space-time.

3.1 Field operator in position basis

To determine the time evolution of the field, we work in the position basis

Φ(0, 0) =

∫ 2π

0
dφΨ0(φ) a†(φ) + Ψ∗

0(φ) a(φ) . (3.13)

with

Ψ0(φ) = (φ|Φ(0, 0)Ω) . (3.14)

From eq. (3.8), we get the following differential equation:

(φ|K2 Φ(0, 0)Ω) = −i

{

cos φ
d

dφ
−

(

s +
1

2

)

sinφ

}

Ψ0(φ) = 0 . (3.15)

The general solution is given by

Ψ0(φ) = AΘ(cos φ) (cos φ)−s− 1
2 + B Θ(− cos φ) (− cos φ)−s− 1

2 , (3.16)

where Θ is the Heaviside step function and from the action of the dS transformation given

in eq. (2.6) and the covariance of the field operator, we deduce the field operator at an

arbitrary point in dS2 as

Φ(t, θ) =

∫ 2π

0
dφΨt,θ(φ) a†(φ) + Ψ∗

t,θ(φ) a(φ) . (3.17)

– 9 –
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θ=πθ=π/2θ=0θ=−π/2θ=−π

t=0

t=−

t=

θ

(0,0)

(t,  )

Figure 1: The Carter-Penrose diagram of the two dimensional dS space. We have represented

the causal past of the point (t, θ).

with

Ψt,θ(φ) = AΘ(cosh t cos(φ − θ) + sinh t) (cosh t cos(φ − θ) + sinh t)−s− 1
2 + (3.18)

+ B Θ(− cosh t cos(φ − θ) − sinh t) (− cosh t cos(φ − θ) − sinh t)−s− 1
2 .

It is important to notice that although we got a first order differential equation, being

singular at φ± = θ±arccos(− tanh t), its solution depends on two complex numbers (which

can then be related to c0 and c1). Notice also that the interval [φ−, φ+] corresponds to the

region of space which is in the causal infinite past of (t, θ) (see, figure 1). From this we

learn that the two-folded degeneracy of covariant field operators is deeply related to the

causal structure of de Sitter space.

In the sequel it will be also useful to use the regular holomorphic and anti-holomorphic

combinations:

Ψt,θ(φ) = C (cosh t cos(φ − θ) + sinh t − iǫ)−s− 1
2 + D (cosh t cos(φ − θ) + sinh t + iǫ)−s− 1

2 .

(3.19)

Writing, as usual, the field operator as

Φ(t, θ) =
1√
2π

∞
∑

m=−∞

cm(t) e−imθ a†m + c∗m(t) eimθ am . (3.20)

The coefficient cm(t) are thus given by

cm(t) =
√

2π (m|Φ(t, 0)Ω) =

∫ 2π

0
dφ e−imφ Ψt,0(φ) (3.21)

= Γ(−s + 1
2
)

(

2π

cosh t

)
1
2 [

(C + D) Ps
m− 1

2
(− tanh t) +

+
(

C e−iπ(s+ 1
2
) + D eiπ(s+ 1

2
)
)

(−1)m Ps
m− 1

2
(tanh t)

]

,

and from this, we get the relation between C,D and c0, c1 :

Γ
(

− s
2 + 3

4

)

√
π Γ

(

− s
2 + 1

4

) c0 =
(

1 + (e−iπ)−s− 1
2

)

C +
(

1 + (eiπ)−s− 1
2

)

D ,

Γ
(

− s
2 + 5

4

)

√
π Γ

(

− s
2 + 3

4

) c1 =
(

1 − (e−iπ)−s− 1
2

)

C +
(

1 − (eiπ)−s− 1
2

)

D . (3.22)
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3.2 Commutation relations

In this subsection we show that the covariant fields, solutions of eq. (3.8), automatically

obey canonical commutation relations up to an overall constant we shall determine.

Since γm = γ−m, we have cm = c−m for all m which implies that any covariant field is

invariant under parity: θ → −θ. In turn this implies the following commutation relation

[Φ(0, θ), Φ(0, 0) ] = 0 . (3.23)

See I for the details of the proof. Next, we consider the commutator of the field with its

conjugate momentum Π = ∂tΦ . Using

−i ∂tΦ(0, 0) = [K1, Φ(0, 0) ] =
∞

∑

m=−∞

i√
2π

(

m + s +
1

2

)

cm a†m+1 + h.c. (3.24)

we obtain

h(θ) = i [ Π(0, 0) ,Φ(0, θ) ] =

∞
∑

m=−∞

i

2π

(

m + s − 1

2

)

c∗mcm−1 Qm eimθ + c.c. (3.25)

Now we use

(

m + s +
1

2

)

γ∗
mγm−1 Qm = −i 2−2s+1 Γ

(

m0 + s + 1
2

)

Γ
(

m0 − s + 1
2

)〈m0|m0〉 , (3.26)

to get

h(θ) = Re

(

c0 c∗1
γ0 γ∗

1

)

2−2s+1 Γ
(

m0 + s + 1
2

)

Γ
(

m0 − s + 1
2

)〈m0|m0〉 δ(θ) . (3.27)

The canonical commutation relations are thus satisfied if the coefficient of the Dirac func-

tion δ(θ) is one. From this and the fact that γ0γ1 is purely imaginary, as can be seen from

eq. (3.11), we get

c∗1c0 − c1c
∗
0 = i

Γ
(

s − 1
2

)

Γ
(

−s + 1
2

)

Γ
(

m0 − s + 1
2

)

Γ
(

m0 + s + 1
2

)

1

〈m0|m0〉
. (3.28)

In terms of C and D, this condition, using eq. (3.22), reads

|D|2 − |C|2 =
Γ

(

s + 1
2

)

Γ
(

−s + 1
2

)

Γ
(

m0 − s + 1
2

)

Γ
(

m0 + s + 1
2

)

1

〈m0|m0〉
1

8π cos πs
≡ N2 . (3.29)

This quadratic form is invariant under SU(1, 1) transformations.

3.3 Hadamard requirement and Bunch-Davies vacuum

To understand the meaning of the set of covariant canonical fields, Φc0,c1(t, θ), we consider

the two-point function evaluated in the vacuum

Gc0,c1(t, θ; t′, θ′) ≡ (Ω|Φc0,c1(t, θ)Φc0,c1(t
′, θ′) Ω) . (3.30)
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This observable, which parametrically depends on c0 and c1, can then be compared with the

corresponding quantity obtained in the usual quantization of scalar fields on de Sitter space.

This correspondence is most easily achieved when requiring that G(0, θ; 0, 0) possesses the

Hadamard behavior in the coincidence point limit. This limit is governed by the high m

behavior of the coefficients cm. It coincides with that of flat space if

1

2π
|cm|2 Qm ≈

|m|→∞

1

4π|m| . (3.31)

The asymptotic behaviors of |γm|2 and Qm are given by

|γm|2 ≈
|m|→∞

(m

2

)2s−1
, Qm ≈

|m|→∞
m−2s Γ

(

m0 + s + 1
2

)

Γ
(

m0 − s + 1
2

) 〈m0|m0〉 . (3.32)

The Hadamard condition thus gives

|c0|2
|γ0|2

=
|c1|2
|γ1|2

=
Γ

(

m0 − s + 1
2

)

Γ
(

m0 + s + 1
2

)

22(s−1)

〈m0|m0〉
. (3.33)

If we combine it with the canonical normalization, eq. (3.28), we get a unique solution we

shall call Bunch-Davies (BD) [25]

cBD
0

γ0
=

cBD
1

γ1
=

√

Γ
(

m0 − s + 1
2

)

Γ
(

m0 + s + 1
2

)

22(s−1)

〈m0|m0〉
. (3.34)

Using eq. (3.29), the BD condition simply reads

CBD = 0 , DBD = N . (3.35)

These equations show that the BD solution can be univoquely characterized by the canon-

ical normalization and the anti-holomorphic behavior of the function Ψ0 of eq. (3.19).

Using the above as the reference solution, the moduli space of canonical fields can be

parametrized by

c0 = cBD
0 (cosh α + eiβ sinh α) , c1 = cBD

1 (cosh α − eiβ sinh α) . (3.36)

The moduli space is SU(1, 1)/U(1). As explained for the principal series in I, it corresponds

to the the space of Bogoliubov transformations which preserve de Sitter invariance and

which relate two alpha-vacua [14]. Let us denote by Φ+
BD(x) the part of the BD field

operator which contains only creation operators. Then, repeating the steps of section 5

of [4], the general field can be expressed as

Φα,β(x) = cosh α Φ+
BD(x) + eiβ sinhα Φ+

BD(x̄) + h.c. (3.37)

where x̄ = (π − η, θ + π) is the antipodal point to x = (η, θ).

We have reached the interpretation of our SU(1, 1)/U(1) set of covariant and canonical

fields Φα,β. They provide an alternative description of the fact the canonical quantization

of fields on de Sitter space supplemented by the requirement that the vacuum state be de

– 12 –
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Sitter invariant leads to a SU(1, 1)/U(1) class of de Sitter invariant two-point functions.

In the standard approach these two-point functions are viewed as expectation values built

with the field operator in a class of states, the alpha-vacua. Here instead, the two-point

functions are given by eq. (3.30), which is the expectation values of different field operators

evaluated the unique vacuum state |Ω) which carries the trivial representation.

3.4 in and out vacuum

One of the important physical difference between the fields in the principal and comple-

mentary series is their behavior at large t. In this limit the Klein-Gordon equation reads

(∂2
t + ∂t + M2)Φ = 0 . (3.38)

Its solutions are a combination of e−t/2 e±iµt with

µ =

√

M2 − 1

4
. (3.39)

The principal series is characterized by M2 > 1
4 leading to solutions with oscillatory be-

havior and allowing the determination of in and out vacua as positive (proper) frequency

modes in the remote past and future respectively [15]. For the complementary series we

have instead µ = i s purely imaginary. Therefore the asymptotic solutions are exponen-

tially decreasing in proper time, and the definition of in and out vacua no longer applies.

The same problem arises for M = 0 where µ = −i/2 . In this case however, the conformal

invariance of the Klein-Gordon equation leads to modes varying as e±imη. The positive

conformal frequency modes define the conformal vacuum which coincides with in and out

asymptotic vacua since there is no frequency mixing. Here, we show that we can define in

and out vacua for the complementary series as positive frequency solutions with respect to

a time coordinate which interpolates between the proper time and the conformal time.

In the remote past, the coefficient cm(t) has the asymptotic behavior:

cm(t) ∝
t→−∞

e(s+ 1
2)t

{

1 + i ωin
m

(

2 e−2st
)}

, (3.40)

with

ωin
m =

Γ(1 + s) Γ(m − s + 1
2)

2Γ(1 − s) Γ(m + s + 1
2 )

− sin πs + i(cos πs cosh 2α − sinβ sinh 2α)

cosh 2α − sin(πs + β) sinh 2α
. (3.41)

Let us factorize the overall decreasing term(in |t|) and define a new time coordinate which

in the infinite past is related to t as by

ηs = 2 e−2st. (3.42)

It goes to zero in the remote past and reduces to the conformal time in this limit for

s = −1/2 . The last factor of cm(t) can be written as a plane wave to the first order in ηs:

ei ωin
m ηs + O(ηs

2) . (3.43)
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The in vacuum with respect to the ηs time coordinate is now defined by ωin
m real and

positive. The condition for ωin
m to be real is

tanh 2αin sin βin = cos πs , (3.44)

and the resulting value of ωin
m is given by

ωin
m =

Γ(1 + s) Γ(m − s + 1
2)

2Γ(1 − s) Γ(m + s + 1
2)

√

sin2 β − cos2 πs

cos(πs + β)
, (3.45)

which is positive for β verifying eq. (3.44) and so π(1/2 + s) < β < π(1/2 − s) . No-

tice that we get a family of in vacua since β is an arbitrary angle in the interval

]π(1/2 + s), π(1/2 − s)[ . In the limit s → −1/2, the frequency ωin
m reduces as it should

to |m| which is the conformal frequency. The large m limit of ωin
m varies as m−2s which

has the expected behavior when the complementary series joins the principal one that is

for s → 0.

The large future limit is given by

cm(t) ∝
t→∞

e−(s+ 1
2)t

{

1 + i ωout
m

(

−2 e2st
)}

, (3.46)

with

ωout
m =

Γ(1 + s) Γ(m − s + 1
2)

2Γ(1 − s) Γ(m + s + 1
2)

sinπs + i(cos πs cosh 2α + sin β sinh 2α)

cosh 2α + sin(πs − β) sinh 2α
. (3.47)

We demand that the time coordinate ηs is the remote future has an asymptotic expression

in terms of t given by

ηs = π − 2e2st, (3.48)

so that cm(t) has an ηs dependence given by ei ωout
m ηs . The out vacuum is such that ωout

m is

real and positive. The condition for ωout
m to be real is

tanh 2αout sin βout = − cos πs . (3.49)

and the resulting value of ωout
m is given by

ωout
m =

Γ(1 + s) Γ(m − s + 1
2)

2Γ(1 − s) Γ(m + s + 1
2 )

√

sin2 β − cos2 πs

cos(πs − β)
, (3.50)

which is positive for β verifying eq. (3.49) and so −π(1/2 − s) < β < −π(1/2 + s).

Notice that we get a family of out vacua since β is an arbitrary angle in the interval

]−π(1/2 − s),−π(1/2 + s)[ .

An explicit expression for the time coordinate ηs which gives the required asymptotic

behavior for large and small t is

tan
ηs

2
= e−2st . (3.51)

It reduces to the conformal time in the limit s → −1/2 .

– 14 –
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The mean number of out quanta of momentum m in in vacuum is

n̄out/in =
∣

∣

∣
cosh αout sinhαin eiβin − cosh αin sinhαout eiβout

∣

∣

∣

2
(3.52)

If we compute this between time-reversal in and out vacua with αout = αin, βout = −βin,

then we get

n̄out/in = cosh2(2αin) cos2 πs =
sin2 βin cos2 πs

sin2 βin − cos2 πs
(3.53)

Notice that when βin = π/2 the number of created quanta is minimal and is given by

cot2 πs. It is easy to show that this is also the minimal number of created quanta when

considering all in and out vacua.

In conclusion we have defined for the complementary series in and out vacua which

belong to the SU(1, 1)/U(1) moduli space of dS invariant vacua. Even though they are

not unique for a given value of s they fulfill the criterion of being associated with positive

frequency modes with respect to some asymptotic time parameter. The other unusual

property is that this parameter now depends on s. These states could be relevant in certain

inflationary models when considering nearly massless fluctuation modes with a value of s

belonging to the complementary series but close to the discrete series which represents in

four dimensions the massless minimally coupled field.

4. Massless scalar field from discrete series

Consider the UIR D+
0 of section 2.2 and expand Φ+(0, 0) as

Φ+(0, 0) =
1√
2π

∞
∑

m=1

cm a†m + c∗m am , (4.1)

where

[ am , a†n ] =
〈m+|m+〉

m+
m δm,n , m , n ,m+ ∈ Z>0 . (4.2)

The locality condition [K2 , Φ+(0, 0) ] = 0 gives

c2m = 0 , (2m + 1)c2m+1 = (−1)m c1 . (4.3)

The commutator at equal time can now be readily calculated

[Φ+(0, θ) , Φ+(0, 0) ] =
〈m+|m+〉

m+

|c1|2
2π

∞
∑

m=0

ei(2m+1)θ − e−i(2m+1)θ

2m + 1

= i
〈m+|m+〉

m+
|c1|2 sgn(θ) . (4.4)

where sgn(θ) is 2π-periodic, odd and equals +1 for 0 < θ < π and −1 for π < θ < 2π.

The field is not a canonical one since the commutator at equal times does not vanish. The

above commutation relation implies that

[ ∂θΦ+(0, θ) , Φ+(0, 0) ] = 2i
〈m+|m+〉

m+
|c1|2 δ(θ) . (4.5)
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Using the fact that the time derivative at t = 0 is

∂tΦ+(0, 0) =
1√
2π

∞
∑

m=0

(−1)m+1
(

c1 a†2m+2 − c∗1 a2m+2

)

. (4.6)

we deduce that ∂tΦ(0, 0) and Φ(0, θ) commute. Hence, Φ is not a canonical field.

In this we recover the fact that it is impossible to construct a canonical and covariant

massless field on dS space. This is indeed in agreement with the result of Allen [14], who

started with a massless canonical field and showed that it has no dS invariant two-point

function. Here instead we have a well defined two-point function but we have lost the

canonical commutation relations.

4.1 Non canonical massless field

In spite of the fact our field is non-canonical it is worth to further analyze its properties.

First, it obeys the conformally invariant equation (∂2
η −∂2

θ )Φ = 0. This allows a simple

determination of the field operator at an arbitrary point from the operator and its time

derivative at η = π/2 and θ = 0. A simple calculation yields

Φ+(η, θ) =
c1√
2π

∞
∑

m=1

sin(mη)

m

(

e−imθ a†m + eimθ am

)

. (4.7)

Second, its Wightman function G(η, θ ; η′, θ′) = (Ω|Φ+(η, θ)Φ+(η′, θ′)Ω) is well de-

fined, thanks to the absence of the zero mode. Explicitly, one finds:

G(x;x′) =
〈m+|m+〉

m+

|c1|2
8π

[

ln

∣

∣

∣

∣

1 + Z(x;x′)

1 − Z(x;x′)

∣

∣

∣

∣

+ iπ sgn(θ − θ′)Θ
(

1 − Z2(x;x′)
)

]

. (4.8)

where

Z(η, θ ; η′, θ′) =
cos(θ − θ′) − cos η cos η′

sin η sin η′
= XµX ′

µ . (4.9)

This two-point function is dS invariant as can be easily seen from the embedding of dS2 in

a flat three dimensional space. The product Z(1,2)(x;x′) = XµX ′
µ is an invariant which is

symmetric with respect to the exchange of the two spacetime points. It is related to the

invariant distance σ(x;x′) between the two spacetime points by Z(x;x′) = cos {σ(x;x′)}.
When the vector ǫµνρX

νX ′ρ is timelike, an antisymmetric invariant is given by the sign

of the time component. In this case we recover the function sgn(θ − θ′)Θ(1 − Z(x;x′)2)

introduced above.1

1When (Xµ
−X ′µ)(Xµ −X ′

µ) is negative, the antisymmetric invariants are given by the sign of the time

component X0
− X ′0 which is also the sign of the difference t − t′ or η − η′ when Z(x; x′) > 1. Explicitly

one has

s
(1,2)(x;x′) = sgn(η − η

′) Θ(Z(x;x′) − 1) . (4.10)

When changing X ′µ to −X ′µ, that is, when replacing x′ by its antipodal point x′
A, gives the other invariant

s
(1,2)
A (x; x′) = s

(1,2)(x;x′
A) = sgn(η + η

′
− π) Θ(−Z(x;x′) − 1) . (4.11)
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Third, our field operator is closely related to the two-dimensional fields used in string

theory [26]. Indeed, up to a normalization convention, our field coincides with that describ-

ing the coordinate of an open string with Dirichlet boundary conditions at both ends, and

with the spatial and temporal coordinates interchanged: Φ+(η, θ) = X(τ = −θ, σ = η) . At

this point it is worth to notice that the interchange of the spatial and temporal coordinates

gives a canonical massless field defined on AdS. In fact under this exchange, one recovers

that the creation operators in eq. (4.7) have only positive frequencies. Moreover in that

case, the canonical commutation relations fixes the normalization of c1 in eq. (4.5).

Fourth, as in string theory, because of the conformal invariance, our field is covariant

under a larger group of transformations. The generators of this group are

Lm =

∞
∑

n=1

a†n am+n +
1

2

m−1
∑

n=1

an am−n , L−m = L†
m , m ≥ 0 , (4.12)

and they act on the field as

[Lm , Φ+(η, θ) ] = i
(

e−im(θ+η)∂θ+η + e−im(θ−η)∂θ−η

)

Φ+(η, θ)

= e−imθ (sin mη ∂η + i cos mη ∂θ)Φ+(η, θ) , (4.13)

and satisfy the Virasoro algebra with central charge c = 1 :

[Lm , Ln ] = (m − n)Lm+n +
1

12
(m3 − m)δm,−n . (4.14)

Notice that the generators of the dS group correspond to L±1 = ∓iK± and L0 = J . These

three generators do not contain pair of creation or annihilation operators, as can be seen

from eq. (4.12).

In spite of these well defined properties, the non-canonical character of our field shows

up when considering the normal ordered operator of the energy-momentum tensor Tµν =

: ∂µΦ∂νΦ − 1
2gµν∂ρΦ∂ρΦ : and the Hamiltonian operator:

H =

∫ 2π

0
dθ Tηη =

∫ 2π

0
dθ (T++ + T−−) , (4.15)

where the subscripts ± are with respect to the light cone variables x± = η ± θ. T++ and

T−− give also the generators of Virasoro algebra, Lm , as

c2

2
Lm =

∫ 2π

0
dx+ e−imx+

T++(x+) =

∫ 2π

0
dx− eimx−

T−−(x−) , (4.16)

so one finds immediately H = c2 J and the Hamiltonian H generate rotations rather

than time translations. In fact calculating the θ-translation generator in the Hamiltonian

formalism as

Pθ =

∫ 2π

0
dθ Tηθ =

∫ 2π

0
dθ (T++ − T−−) , (4.17)

we get identically Pθ = 0 6= J . This is due to the interchange of the role of time and

space in the canonical commutation relation. We consider also the transition amplitude of
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a detector [23] with resonance frequency E, coupled linearly to Φ, and located at constant

θ. This amplitude is proportional to

A(E) =

∫ ∞

−∞
dt e−iEt G(t, θ; 0, θ) =

|c|2
4E

tanh
(π

2
E

)

. (4.18)

It is even in E so the detector has the same probability of loosing energy or gaining the

same amount of energy. It cannot reach thermal equilibrium since the final steady state

will be characterized by equally populated states (infinite temperature).

4.2 Parity invariant massless field

It should be noticed that our field is not invariant under parity. In what follows we shall

construct a parity invariant field and show that the above sicknesses are not cured by this

new field.

Consider first the scalar field constructed from the other discrete series D−
0 . Its ex-

pansion reads

Φ−(η, θ) =
c−1√
2π

−1
∑

m=−∞

sin(mη)

m

(

e−imθ a†m + eimθ am

)

. (4.19)

where

[ am , a†n ] =
〈m−|m−〉

m−
m δm,n , m, n, m− ∈ Z<0 . (4.20)

The generators of a new Virasoro algebra L̃m’s are given by

L̃m =

∞
∑

n=1

a†−n a−m−n +
1

2

m−1
∑

n=1

a−n a−m+n , L̃−m = L̃†
m , m ≥ 0 . (4.21)

The generators of the original dS group are L̃±1 = ∓iK∓ and L̃0 = −J . The Virasoro

algebra generated by L̃m have also a central charge c = 1 , and act on the field as

[ L̃m , Φ−(η, θ) ] = −i
(

eim(θ+η)∂θ+η + eim(θ−η)∂θ−η

)

Φ−(η, θ)

= eimθ (sin mη ∂η − i cos mη ∂θ) Φ−(η, θ) . (4.22)

Its two-point function is given by the complex conjugated of that of positive series (4.8),

up to a normalization constant.

We can now construct a parity invariant field by taking the sum of the two previous

fields with c1 = c−1 = c, and with 〈m+|m+〉/m+ = −〈m−|m−〉/m− which we put to one

for m± = ±1 . Explicitly, one has

Φ(η, θ) = Φ+(η, θ) + Φ−(η, θ)

=
c√
2π

∞
∑

m=1

sin(mη)

m

{

e−imθ
(

a†m + a−m

)

+ eimθ
(

a†−m + am

)}

. (4.23)

The resulting field has a vanishing commutator for all spacetime points

[ Φ(η, θ) , Φ(η′, θ′) ] = 0 . (4.24)
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It therefore behaves as a classical field.

In addition, this is reflected in the Virasoro algebra generated by Lm induced from the

Lm of Φ+ and L̃m of Φ−:

Lm = Lm − L̃−m . (4.25)

which has a vanishing central charge. Even though the field has both positive and negative

modes which correspond to left-moving and right-moving string oscillation modes, it has

only one set of Virasoro algebra Lm. The other set of Virasoro algebra generated by

L̃m = Lm + L̃−m does not leave the field covariant. Notice finally that the Wightman

function is twice the symmetrical part of that of eq. (4.8). It is therefor real.

5. Massless limit of massive field

Given that we obtained a set of canonical fields when dealing with the complementary

series and no canonical field for the discrete series, it is interesting to consider the massless

limit from the complementary series: ε = s + 1/2 → 0.

From eq. (3.21) and eq. (3.34), the BD coefficients are given by

cBD
m (η) =

1√
2

{

ε−1 + ln(2 sin η) − 1
2 + i

(

η − π
2

)

+ O(ε) ; m = 0

|m|−1 ei|m|η + O(ε) ; m 6= 0
, (5.1)

where we chose the normalization m0 = 1 = 〈1|1〉 . The commutation relations and the

scalar product behave as

[ am , a†m ] = 〈m|m〉 =

{

ε(1 − ε)−1 ; m = 0

|m| + O(ε) ; m 6= 0
. (5.2)

From eq. (5.1), we deduce the behavior of the BD field

ΦBD(η, θ) =
1

2
√

π

[(

1

ε
+ ln(2 sin η) − 1

2

)

(

a†0 + a0

)

+ i
(

η − π

2

)(

a†0 − a0

)

]

+

+
1

2
√

π

∑

m6=0

1

|m|
(

ei|m|η−imθ a†m + e−i|m|η+imθ am

)

+ O(ε) . (5.3)

In the limit ε → 0, the zero mode contains a ε−1 divergence whereas the commutation

relation of a0 and a†0 vanishes as ε. The two combinations which appear in the zero mode

are

q =
1

2
√

π ε

(

a†0 + a0

)

, p = i
√

π(1 − ε)
(

a†0 − a0

)

. (5.4)

They obey a canonical commutation relation [ q , p ] = i . The zero mode part of the BD

field is thus expressed as

∫ 2π

0

dθ

2π
ΦBD(η, θ) = q + p

η − π
2

2π
+ O(ε) , (5.5)

which has a finite limit.
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For finite ε the vacuum |Ω) is annihilated by a0 =
√

πεq + i{2√π(1− ε)}−1p. When ε

goes to zero with finite q and p , this condition reduces to p |Ω) = 0 [18]. Such a state cannot

be normalized as is the case in the quantum mechanics for a one-dimensional harmonic

oscillator in the limit of vanishing frequency. The resulting Fock space is therefore the

tensor product of the Fock space we obtained in section 4.2 and the Hilbert space carrying

a representation of the commutator [ q , p ] = i .

In the ε → 0 limit the zero mode operator p appears also in the generators K± of the

dS group

K+ =
p

2
√

π

(

a†1 + a−1

)

+ i
∑

m6=0,−1

a†m+1 am . (5.6)

The condition that the vacuum be dS invariant leads again to p |Ω) = 0. It is important to

notice that we no longer are in the general framework we described in section 3 where the

Fock space and the generators of the dS group are constructed only from the irreducible

representations. The massless limit leads indeed to a larger Fock space and modified

generators: In the subspace where p = 0, we recover the generators constructed from the

UIR of the discrete series. When p 6= 0, the number of particles is no longer dS invariant,

i.e. the subspace with N particles is no longer invariant under the dS transformations.

In the previous section when considering the massless field from discrete series, we

found a unique field operator once we require its covariance. That expression differs from

the above ΦBD. This follows from the presence of the zero mode operators in the generators

of the dS group. It is therefore of interest to study how the zero mode operators transform

under the SU(1, 1) group. Using eq. (3.37), the massless limit of the general field operator

is

Φα,β(η, θ) = qα,β + pα,β
η − π

2

2π
+

+
1

2
√

π

∑

m6=0

1

|m|
(

cosh α ei|m|η + sinhα eiβe−i|m|η
)

e−imθa†m + h.c. (5.7)

where the zero mode operators qα,β and pα,β are given by

qα,β =
1

2
√

π ε

{(

cosh α + eiβ sinhα
)

a†0 + h.c
}

,

pα,β = i
√

π(1 − ε)
{(

cosh α − eiβ sinhα
)

a†0 − h.c
}

, (5.8)

The dS generators now read

K+ =
pα,β

2
√

π

a†1 + a−1

cosh α + cos β sinh α
+ i

∑

m6=0,−1

a†m+1 am . (5.9)

Notice that the generators depend explicitly on α and β. Notice also that the dS invariant

vacuum must satisfy pα,β |Ω) = 0 which is the same condition as p |Ω) = 0. Notice finally

that unless β = π, in the limit α → +∞ the zero modes cancel out from the generators
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and the field operator which for β = 0 reads

Φα,0(η, θ) = qα,0 + pα,0
η − π

2

2π
+

+
1

2
√

π

∑

m6=0

1

|m|
(

i eα sin |m|η + e−α cos mη
)

e−imθa†m + h.c. (5.10)

tends to the non canonical commuting field of eq. (4.23).

We finally notice that the energy momentum tensor given in the light cone coordinates

by T++ = : ∂+Φ ∂+Φ : and T−− = : ∂−Φ ∂−Φ : now generates two copies of Virasoro

algebra:

Lm =

∫ 2π

0
dx+ eimx+

T++(x+) , L̃m =

∫ 2π

0
dx− eimx−

T−−(x−) . (5.11)

The zero mode generators L0 and L̃0 define the rotation generator:

J = L̃0 − L0 =
∑

m≥1

a†m am − a†−m a−m , (5.12)

and a Hamiltonian:

H = L0 + L̃0 =
p2

4π
+

∞
∑

m=1

[

cosh 2α
(

a†m am + a†−m a−m

)

+

+ sinh 2α
(

eiβ a†m a†−m + e−iβ am a−m

)

]

. (5.13)

which reproduces the correct time evolution, in agreement with the fact that the field is

canonical.

5.1 Vertex operator and massless two-point function

As we saw in the previous section, the dS invariant vacuum is not normalizable since it

is the solution to p |Ω) = 0. An easy way to regularize this infinity is to compactify the

scalar field on a circle, that is to identify Φ and Φ + 2πL where L is the radius of the

circle. This amounts to compactify the zero mode q and so p has discrete eigenvalues n/L

with n ∈ Z and its eigenmodes are normalizable. Observables should be invariant under

Φ → Φ + 2πL . This excludes the scalar field Φ as an observable but includes derivatives

of Φ or a covariant regularization of exp(iΦ/L) which we will call the vertex operator V .

We define V at the origin of spacetime as the normal ordered exponential, that is

V (0) = : e
i
L

Φ(0) : , (5.14)

where : · : is normal-ordering prescription and it does not affect the zero mode. It can be

obtained from the massive fields as

V (0) = lim
ε→0

e
i
L

Φ+
ε (0) e

i
L

Φ−
ε (0) e

1
4πL2 [ c0 a†

0 , c∗0 a0 ] . (5.15)
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Here, Φ+
ε (resp. Φ−

ε ) denotes the part of the massive field depending on creation (resp.

annihilation) operators. This shows that V (0, 0) commutes with K2 because Φ± do and

the last factor is a c-number. And we can translate with the dS transformations

V (t, θ) = e−iJθ eiK1t V (0, 0) e−iK1t eiJθ = lim
ε→0

e
i
L

Φ+
ε (t,θ) e

i
L

Φ−
ε (t,θ) e

1
4πL2 [ c0 a†

0 , c∗0 a0 ] , (5.16)

and this is an dS covariant definition of the vertex operator. If we decompose the massless

BD field as Φ(η, θ) = φ0(η, θ) + φ+(η, θ) + φ−(η, θ) with

φ0(η, θ) = q + p
η − π

2

2π
, φ+(η, θ) =

1

2
√

π

∑

m6=0

1

|m|e
i|m|η−imθ a†m , φ−(η, θ) =

(

φ+(η, θ)
)†

,

(5.17)

then the vertex operators defined in eq. (5.16) reads

V (η, θ) = e
i
L

φ+(η,θ) e
i
L

φ−(η,θ) e
i
L

φ0(η,θ) (sin η)
1

4πL2 (5.18)

It is important to notice that this definition of the vertex operator is not same as the usual

one : e
i
L

Φ(x) : which was considered in [27]. The last factor (sin η)1/4πL2
in eq. (5.18) is

necessary for the dS covariance.

The two-point function of vertex operators is readily calculated and is given by

(Ω|V †(x)V (x′) Ω) = exp

[

− 1

4πL2
log

{

2
(

1 − Z̃(x̄; x̄′)
)}

]

, (5.19)

where Z̃(x;x′) = Z(x;x′)+ i sgn(t− t′) ǫ . Since log z has a branch cut on the negative real

axis, the term i ǫ sgn(t− t′) contributes only when Z(x;x′) > 1 and thus is equivalent to a

dS invariant quantity i ǫ s(1,2)(x, x′) in eq. (4.10). Furthermore it is related to the massive

two-point function which has a divergence in (4πε)−1 by

lim
ε→0

exp

[

1

L2

{

(Ω|Φε(x)Φε(x
′)Ω) − 1

4π

(

1

ε
+ 2 ln 2

)}]

. (5.20)

Our regularization isolates the divergent piece of the two-point function and leaves a dS

invariant result.

6. Arbitrary dimension

In this section we generalize to arbitrary dimensions the approach we have used in two

dimensions. The scalar UIR will be easily generalized by their realizations with functions

on the (n − 1)-sphere, Sn−1.

The n-dimensional de Sitter space, dSn is described by the hyperboloid in (n + 1)-

dimensional Minkowski space R
1,n:

ηABXAXB = 1 , (6.1)

where ηAB = diag(−1, 1, . . . , 1). In the following we use the index notation:

A,B,C,D = 0, 1, . . . , n ; I, J = 1, 2, . . . , n ;

µ, ν = 0, 1, . . . , n − 1 ; i, j, k = 1, 2, . . . , n − 1 .
(6.2)
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6.1 The complementary series of SO0(1, n)

The isometry group of dSn is SO0(1, n). It is the group of special orthogonal transforma-

tions continuously connected to the identity which leaves eq. (6.1) invariant. The generators

of SO0(1, n) verify the following algebra:

[MAB , MCD ] = −i ( ηACMBD − ηADMBC − ηBCMAD + ηBDMAC ) . (6.3)

The scalar representations of SO0(1, n) can be realized on the space of functions on Sn−1,

which is conveniently parametrized by a vector ~ζ in R
n subject to |~ζ| = 1 . The action of

the generators of SO0(1, n) in the representation labeled by s are given by

( ~ζ |MIJ Ψ) = i

(

ζI
∂

∂ζJ
− ζJ

∂

∂ζI

)

( ~ζ |Ψ) ,

( ~ζ |MI0 Ψ) =

{

ζJMIJ + i

(

s +
n − 1

2

)

ζI

}

( ~ζ |Ψ) , (6.4)

and the quadratic Casimir is constant in this representation space and is given by

C =
1

2

∑

A,B

MAB MAB = s2 − (n − 1)2

4
, (6.5)

with −(n− 1)/2 < s < (n− 1)/2 for the complementary series. Physically, the value of the

Casimir is the opposite of the mass squared of the particle M2 = (n − 1)2/4 − s2 . It will

also be useful to have the action under finite transformations, we have

( ~ζ | eiθMIJ
Ψ) = ( ~ζ′ |Ψ) ,

( ~ζ | eiωMI0
Ψ) = (cosh ω + ζI sinhω)−s−n−1

2 ( ~ζ′′ |Ψ) , (6.6)

where

~ζ ′ = eiθMIJ ~ζ ,

~ζ ′′ =

(

ζ1

cosh ω + ζI sinhω
, . . . ,

sinh ω + ζI cosh ω

cosh ω + ζI sinhω
, . . . ,

ζn

cosh ω + ζI sinh ω

)

, (6.7)

and where MIJ is the representation of MIJ on the vector space R
n.

For purely imaginary s, this representation is unitary with respect to the L2 scalar

product, (·|·), and this is the principal series. For real s, the scalar product with respect

to which this representation is unitary is, as in two dimensions, 〈·|·〉 ≡ (·|Q ·) where Q is

the intertwiner operator defined in eq. (2.9). From ( ~ζ |M(−s)
AB Q ~ζ′ ) = ( ~ζ′ |M(−s)

AB Q ~ζ )∗ , the

intertwiner is determined up to a normalization:

Q( ~ζ · ~ζ′ ) ≡ ( ~ζ |Q ~ζ′ ) = Q0
Γ
(

s + n−1
2

)

(2π)
n−1

2 2s Γ(s)

(

1 − ~ζ · ~ζ ′
)s−n−1

2
. (6.8)

This scalar product is well defined if the value of s is restricted to 0 < s < (n − 1)/2 and

this is the complementary series.
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The generalization of the Fourier basis valid in the two dimensional case is here pro-

vided by the spherical harmonics in n dimensions. These are conveniently defined from

the set of homogeneous polynomials of degree L in n variables XI which are harmonic. It

can be shown that there are N(n,L) = (2L + n − 2)(L + n − 3)!/L!(n − 2)! independent

harmonic and homogeneous polynomials. Their restriction on the unit sphere defines the

spherical harmonics SL,k(~ζ) = ( ~ζ |L, k) with L = 0, 1, . . . , and k = 0, 1, . . . , N(n,L) .

Notice that MIJMIJ is constant on the set of harmonic and homogeneous polynomials

of degree L and is given by L(L + n − 2) . It is easy to verify that the operators MI±

defined by

( ~ζ |MI+|L, k) = i

(

ζI −
1

n + 2L − 2
∂I

)

( ~ζ |L, k) , ( ~ζ |MI−|L, k) = i ∂I( ~ζ |L, k) ,

(6.9)

change the degree of L by ±1. Then the boost can be deduced from the expression of the

generators as

MI0 |L, k) =

{

(

L + s +
n − 1

2

)

MI+ +
s − L − n−3

2

L + n − 1
MI−

}

|L, k) , (6.10)

thus the boost generators MI0 change the degree L of |L, k) by ±1 while the rotation

generators MIJ leave the degree L unchanged. Since the intertwiner Q commutes with the

rotations, it is of the form Q |L, k) = QL |L, k) where QL are c-numbers determined from

the commutation with MI0 . Using eq. (6.10), we get

QL = 〈L0|L0〉
Γ(s + n−1

2 + L0) Γ(−s + n−1
2 + L)

Γ(−s + n−1
2 + L0) Γ(s + n−1

2 + L)
. (6.11)

Here we introduced a reference state L0 with a norm 〈L0|L0〉 . In the following we shall

take L0 = 1 and 〈 1 | 1 〉 = 1 , this also fixes the normalization constant Q0 in eq. (6.8) by

Q0 = (s + n−1
2 )/(−s + n−1

2 ) . Notice that the expression (6.11) is valid for s positive and

negative in the interval ]−(n − 1)/2, (n − 1)/2[ whereas the expression (6.8) applies only

for positive s. The above expression of the intertwiner in spherical harmonic basis can be

also obtained also from eq.(6.8) as is shown in appendix A.

6.2 The massless representation of SO0(1, n)

It is the first member of the discrete series with a vanishing quadratic Casimir operator.

It can be realized on functions on the sphere Sn−1 with vanishing zero modes. A basis is

thus given by the spherical harmonics with L ≥ 1 . The action of the generators is given

by eq. (6.4) with s = (n − 1)/2 . The rotations do not change the degree of homogeneity

and the action of the boosts is given by

MI0 |L, k) =

{

(L + n − 1)MI+ +
L − 1

L + n − 1
MI−

}

|L, k) , (6.12)

where MI± were defined in eq. (6.9). For L = 1, the right-hand side is of degree L = 2,

the set of harmonics with strictly positive degree is thus invariant by the action of the
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generators. The generators will be Hermitian with respect to the scalar product (·|Q ·),
with Q deduced as for the complementary series with s = (n − 1)/2:

QL =
(n − 1)!(L − 1)!

(L + n − 2)!
. (6.13)

Notice that the limit s → (n − 1)/2 of the complementary series decomposes into an

invariant state (L = 0) and the massless representation. The limit is singular because the

norm of the zero mode varies as Γ(s − n−1
2 ) which becomes infinite.

As noticed before, an equivalent representation is provided by s = −(n − 1)/2 . The

scalar product is now given by

QL =
(L + n − 2)!

(n − 1)!(L − 1)!
. (6.14)

The limit s → −(n−1)/2 of the norm of the zero mode of the complementary series is now

zero making this description of the massless representation more convenient. However in

this case, the action of the boosts on the L = 1 state generates the zero norm L = 0 state:

MI0 |1, k) =

(

MI+ − n − 1

n
MI−

)

|1, k) . (6.15)

6.3 Scalar field from the complementary series

We choose the origin in dSn to have the embedding coordinates XA
o = (0, 0, . . . , 0, 1). The

field on any point of dSn, of coordinates XA = ΛA
BXB

o , can be deduced from the field at

the origin Φ(Xo) by

Φ(X) = U(Λ)Φ(Xo)U(Λ)−1 , (6.16)

where Λ is an element of SO0(1, n).

In the global coordinate system:

X0 = sinh t ,

XI = cosh t ξI , ~ξ ∈ Sn−1 ,

ξI = RI
J ξJ

o , ~ξo = (0, . . . , 0, 1) , (6.17)

where R is a element of SO(n) subgroup. The metric reads

ds2 = −dt2 + cosh2 t dΩ2( ~ξ ) . (6.18)

Therefore the point Xo can be transported to any point X by a boost followed by a rotation.

This implies that eq. (6.16) can be written as

Φ(X) = U(R) eitM0n
Φ(Xo) e−itM0n

U(R)−1 . (6.19)

The origin Xo = (0, ~ξo) is invariant under the action of the subgroup SO0(1, n−1) generated

by Mµν . To construct a local field, we thus require

[Mµν , Φ(0, ~ξo) ] = 0 . (6.20)
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From the UIR of SO0(1, n) we define the creation and annihilation operators by

a†( ~ζ ) |Ω) = | ~ζ ) , a( ~ζ ) |Ω) = 0 , (6.21)
[

a( ~ζ ), a†( ~ζ′ )
]

= Q( ~ζ · ~ζ′ ) , [ a( ~ζ ), a( ~ζ′ ) ] = 0 . (6.22)

The field operator in the origin can be expanded in terms of these operators:

Φ(0, ~ξo) =

∫

dn−1Ω( ~ζ ) Ψo( ~ζ ) a†( ~ζ ) + Ψ∗
o( ~ζ ) a( ~ζ ) , (6.23)

where dn−1Ω( ~ζ ) is the invariant volume element on Sn−1.

The covariance condition (6.20) determines the function Ψo( ~ζ ) = ( ~ζ |Φ(0, ~ξo )Ω). The

rotation part of this equation implies that Ψo( ~ζ ) depends on ~ζ only through ~ζ · ~ξo, whereas

the boost part fixes this dependence to be again governed by two arbitrary coefficients:

Ψo( ~ζ ) = C
(

~ζ · ~ξ − iǫ
)−s−n−1

2
+ D

(

~ζ · ~ξ + iǫ
)−s−n−1

2
. (6.24)

Transporting the field with a boost followed by a rotation brings the point (0, ~ξo) to (t, ~ξ ).

We thus get

Φ(t, ~ξ ) =

∫

Sn−1

dn−1Ω( ~ζ ) Ψt, ~ξ ( ~ζ ) a†( ~ζ ) + Ψ∗
t, ~ξ

( ~ζ ) a( ~ζ ) , (6.25)

where Ψt, ~ξ ( ~ζ ) = ( ~ζ |Φ(t, ~ξ )Ω) is given by

Ψt, ~ξ ( ~ζ ) = C
(

cosh t ~ζ · ~ξ + sinh t − iǫ
)−s−n−1

2
+ D

(

cosh t ~ζ · ~ξ + sinh t + iǫ
)−s−n−1

2
.

(6.26)

At this point we are comparing with the results of the principal series I. The expres-

sion (6.26) is identical with that of the principal series with s → −iµ. The only difference

is to be found in the commutation relations of creation and annihilation operators.

The two-point function is simply expressed in terms of Ψt,ξ( ~ζ ) and the intertwiner

Q( ~ζ · ~ζ′ ) as

(Ω|Φ(t, ~ξ )Φ(t′, ~ξ
′)Ω) =

∫

Sn−1

∫

Sn−1

dn−1Ω( ~ζ ) dn−1Ω( ~ζ
′) Ψ∗

t, ~ξ
( ~ζ )Q( ~ζ · ~ζ′ )Ψt′, ~ξ

′( ~ζ
′) . (6.27)

The above integral can be expressed in terms of hypergeometric functions as shown in the

appendix B. We obtain

(Ω|Φ(x)Φ(x′)Ω) = |C|2 Fn(x;x′) + |D|2 Fn(x̄; x̄′) + 2Re
[

C∗D eiπ(−s−n−1
2 )Fn(x; x̄′)

]

,

(6.28)

with

Fn(x;x′) = Vn−1
s + n−1

2

−s + n−1
2

2F1

(

s +
n − 1

2
, −s +

n − 1

2
;

n

2
;

1 + Z̃(x;x′)

2

)

, (6.29)

where Vn−1 is the area of (n − 1)-sphere, 2πn/2/Γ(n/2) . We have defined Z̃ by

Z̃(x;x′) = Z(x;x′) + i sgn(t − t′) ǫ , (6.30)
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where Z is the dS invariant quantity:

Z(t, ~ξ; t′, ~ξ′) = cosh t cosh t′ ~ξ · ~ξ′ − sinh t sinh t′ = XAX ′
A . (6.31)

The analysis of the equal time commutation relations made in I for the principal series

applies also here and leads to commuting fields and

[ ∂tΦ(0, ~ξo ), Φ(0, ~ξ ) ] = iNn δn−1( ~ξ−~ξo ) , (6.32)

with Nn a constant which we shall shortly determine in terms of C and D. From the

imaginary part of the short distance behavior of two-point function (6.28) which is given

by

GdSn(x;x′) ≈
x→x′

2n−1 π
n
2

(

s + n−1
2

)

Γ
(

s + n−1
2

)

Γ
(

−s + n+1
2

) ×

×































|C|2 log
{

(x − x′)2 − (t − t′ + iǫ)2
}−2

+

+ |D|2 log
{

(x − x′)2 − (t − t′ − iǫ)2
}−2

, for n = 2 ,

|C|2
{

(~x − ~x′)2 − (t − t′ + iǫ)2
}

2−n
2 +

+ |D|2
{

(~x − ~x′)2 − (t − t′ − iǫ)2
}

2−n
2 , for n 6= 2 ,

(6.33)

the requirement Nn = 1 leads to

|D|2 − |C|2 =
Γ

(

s + n−1
2

)

Γ
(

−s + n+1
2

)

2n+1πn
(

s + n−1
2

) . (6.34)

Another constraint on C and D can be obtained by demanding that the two point

function coincides with the flat one in the small distance limit. This gives the so called

Bunch-Davies vacuum [25]. In the coincidence point limit, the Minkowski vacuum positive

Wightman function behaves as

GMink(x;x′) ≈
x→x′

1

4π
n
2

×











log
{

(x − x′)2 − (t − t′ − iǫ)2
}−2

, for n = 2 ,

Γ(n
2 − 1)

{

(~x − ~x′)2 − (t − t′ − iǫ)2
}

2−n
2 , for n 6= 2 .

(6.35)

Imposing that the behavior be that of Hadamard, one gets the Bunch-Davies coefficients:

CBD = 0 , DBD =

√

Γ
(

s + n−1
2

)

Γ
(

−s + n+1
2

)

2n+1πn
(

s + n−1
2

) . (6.36)

The general coefficients C and D can be expressed in terms of the Bunch-Davies coefficients

as

C = eiβ sinhα e−iπ(s+ n−1
2

)DBD , D = cosh α DBD . (6.37)

To study the asymptotic time behavior of the field operator and determine the α and

β coefficients corresponding to the in and out vacua, it is useful to expand the field in the

spherical harmonic basis as

Φ(t, ~ξ ) =
∑

L,k

cL(t)SL,k( ~ξ ) a†L,k + h.c. (6.38)
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where the creation operators a†L,k are related to UIR states |L, k) . The coefficient cL(t) is

calculated from eq. (6.26) by decomposing on the spherical harmonics as shown in appendix

A, it reads

cL(t) =
2
(

2π
cosh t

)
n−1

2

Γ(s + n−1
2 )

[

D e−iπ(s+ n−1
2

)
(

Qs
L+ n−3

2
(− tanh t) + i

π

2
Ps

L+ n−3
2

(− tanh t)
)

(6.39)

+ C eiπ(s+ n−1
2

)
(

Qs
L+ n−3

2
(− tanh t) − i

π

2
Ps

L+ n−3
2

(− tanh t)
)

]

,

where Pµ
ν and Qµ

ν are associated Legendre functions of the first and second kind respectively.

Using the parametrization (6.37), the asymptotic behavior in the remote past of cL(t) for

non-integer s is shown in the appendix A to be given by

cL(t) =
t→−∞

P (e2t) e(s+ n−1
2 )t {

1 + i ωin
L

(

2 e−2st
)

+ o
(

e−2st
)}

, (6.40)

where P is a real polynomial of degree less than −s up to an overall phase and the frequency

ωin
L is given by

ωin
L =

Γ(1 + s) Γ(L − s + n−1
2 )

2Γ(1 − s) Γ(L + s + n−1
2 )

− sin πs + i(cos πs cosh 2α + cos(β + n−1
2 π) sinh 2α)

cosh 2α + cos
(

β +
(

s + n−1
2

)

π
)

sinh 2α
.

(6.41)

Factorizing the overall decreasing term and defining a new time coordinate as eq. (3.42),

the last factor of cL(t) can be written as a plane wave to the first order in ηs as the

two-dimensional case (3.43). The in vacuum with respect to ηs is defined by ωin
L real and

positive. Since the real part of ωin
L is always positive, the condition Im[ωin

L ] = 0 is sufficient

and reads

cos πs = − tanh 2α cos

(

β +
n − 1

2
π

)

. (6.42)

This condition interpolates between the BD vacuum in the conformally massless case which

in n-dimensions corresponds to s = −1/2 and the Mottola-Schwinger in vacuum of the

principal series which is given with the conditions [15]:

cosh πµ = coth 2α , cos

(

β +
n − 1

2
π

)

= −1 , (6.43)

where µ = i s ∈ R .

The large future limit is similarly determined in the appendix to be given by

cL(t) =
t→∞

Q(e−2t) e−(s+ n−1
2 )t {

1 + i ωout
L

(

−2 e2st
)

+ o
(

e2st
)}

, (6.44)

where Q is a real polynomial of degree less than −s multiplied by an overall constant and

where ωout
L is given by

ωout
L =

Γ(1 + s) Γ(L − s + n−1
2 )

2Γ(1 − s) Γ(L + s + n−1
2 )

− sinπs + i(cos πs cosh 2α + cos(β − n−1
2 π) sinh 2α)

cosh 2α + cos
(

β −
(

s + n−1
2

)

π
)

sinh 2α
.

(6.45)
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Using a time coordinate ηs given in eq. (3.48), the last factor of cL(t) becomes a plane wave

to the first order in ηs and the reality of ωout
L defines the out vacuum:

cos πs = − tanh 2α cos

(

β − n − 1

2
π

)

. (6.46)

The resulting ωout
L is positive. Comparing with the out vacuum in the principal series:

cosh πµ = coth 2α , cos

(

β − n − 1

2
π

)

= −1 , (6.47)

we can see that this newly defined out vacuum also interpolates between the BD vacuum

in the conformally massless case s = −1/2 and the Mottola-Schwinger out vacuum in the

principal series.

Notice that contrary to the case of the principal series we get a family of dS invariant in

and out vacua parametrized by β. For the time-reversal in and out vacua with αout = αin,

βout = −βin, the mean number of out quanta of momentum L in in vacuum can be easily

obtained as

n̄out/in = cosh2(2αin) cos2 πs =
cos2

(

βin − n−1
2 π

)

cos2 πs

cos2
(

βin − n−1
2 π

)

− cos2 πs
. (6.48)

It vanishes, as it should, in the conformal case s = −1/2 and diverges in the s → 0

limit. Notice that the number also vanishes for s half integer and tends to infinity when

s approaches an integer. It should also be noticed that for n odd the family of in vacua

coincides with the family of out vacua, this is to be compared with the fact that in odd

dimensions the in and out vacua also coincide for the principal series. Notice that when

βin = (n − 1)π/2 , the number of created quanta is minimal and is given by cot2 πs. It is

easy to show that this is also the minimal number of created quanta when considering all

in and out vacua.

It remains to examine the case of integer s, in this case the asymptotic behavior of

cL(t) in the remote past is given by

cL(t) =
t→−∞

R(e2t) e(s+ n−1
2 )t {

1 + i νL

(

2 e−2st
)

+ o
(

e−2st
)}

, (6.49)

where R is a decreasing real function with overall complex constant and the frequency νL

is given by

νL =
Γ(L + n−1

2 − s)

2Γ(−s) Γ(1 − s) Γ(L + n−1
2 + s)

[

π
1 − i sinh 2α sin(β + s + n−1

2 )

cosh 2α + cos(β + s + n−1
2 ) sinh 2α

+ (6.50)

−i
{

ψ(1) + ψ(1 − s) − ψ(L + n−1
2

) − ψ(L + n−1
2

− s)
}

]

,

where ψ is digamma function. Requiring νL to be real, we obtain a constraint on the value

of α and β as in the case of non-integer s. However in the present case, the condition that

α and β should satisfy depends also on the mode L , which means thus defined in vacuum

is not dS invariant.

– 29 –



J
H
E
P
0
9
(
2
0
0
7
)
0
3
0

6.4 Massless limit of massive field

We consider the massless limit of the massive scalar field from the complementary series.

As ε = s + (n − 1)/2 approaches to zero, the zero mode coefficient, c0(t), in eq. (6.39)

diverges, since the associated Legendre function of the second kind Q
ε−n−1

2

L+ n−3
2

diverges when

ε approaches zero.

This divergence can be also more explicitly seen in the position basis. If we expand

Ψη,~ξ given in eq. (6.26) in ε, using eq. (6.36) and eq. (6.37), we get

Ψη,~ξ( ~ζ ) =

√

Γ(n)

2n+1πn
×

×
[

(

cosh α+eiβ sinhα
)

(

1

ε
+ln(sin η)−ln

∣

∣

∣

~ζ · ~ξ−cos η
∣

∣

∣
+

1

2
(ψ(1)−ψ(n))−i

π

2

)

+

+ i π
(

cosh α − eiβ sinhα
)

{

1

2
− Θ (cos η − ~ζ·~ξ )

}

]

+ O(ε) . (6.51)

The only divergent term in the ε → 0 limit is a constant, i.e. it contributes only to the zero

mode c0(η). Using eq. (6.51), we get the small ε behavior of the zero mode as

c0(η) =

√

Vn−1

Vn

[

(

cosh α + eiβ sinhα
)

(

1

ε
+ f(η) − i

π

2

)

+ i
(

cosh α − eiβ sinhα
)

g(η)

]

+ O(ε) , (6.52)

where f and g are defined by

f(η) = ln(sin η) +
1

2
(ψ(1) − ψ(n)) − Vn−2

Vn−1

∫ π

0
dφ sinn−2 φ ln | cos η − cos φ| ,

g(η) =
π Vn−2

Vn−1

∫ η

π
2

dφ sinn−2 φ = −π Vn−2

Vn−1
cos η 2F1

(

1

2
,

3 − n

2
;

1

2
; cos2 η

)

. (6.53)

Another source of singularity in the ε → 0 limit is the vanishing of the norm of the zero

mode. This translates into the vanishing of the commutator:

[ a0 , a†0 ] =
ε

n − 1 − ε
. (6.54)

The combination (c0 a†0 + c∗0 a0)/
√

Vn−1 which appears in the zero mode part of the field

operator can be put in the form

qα,β + pα,β

g(η)

π Vn−2
(6.55)

where qα,β and pα,β are given by

qα,β =
1

ε
√

Vn

{(

cosh α + eiβ sinhα
)

a†0 + h.c.
}

,

pα,β = i
√

Vn

(

n − 1 − ε

2

)

{(

cosh α − eiβ sinhα
)

a†0 − h.c.
}

, (6.56)
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and they obey canonical commutation relations [ qα,β , pα,β ] = i . Finally, the scalar field

in the massless limit is expressed as

Φ(η, ~ξ) = qα,β + pα,β

g(η)

π Vn−2
+

∫

Sn−1

dn−1Ω(~ζ)Υ
η,~ξ

(~ζ) a†∗(~ζ) + h.c. (6.57)

where the non-zero part of creation operator a†∗(~ζ) and its coefficient Υη,~ξ are defined by

a†∗(~ζ) ≡ a†(~ζ) − 1√
Vn−1

a†0 , [ a∗( ~ζ ) , a†∗( ~ζ
′) ] = Q(~ζ · ~ζ′) , (6.58)

Υt,~ξ(~ζ) = −
√

Γ(n)

2n+1πn

[

eiβ sinhα ln
(

cosh t~ζ · ~ξ − sinh t − iǫ
)

+

+ cosh α ln
(

cosh t~ζ · ~ξ − sinh t + iǫ
) ]

.

The above expression has a well defined limit.

As in the two-dimensional case, as ε goes to zero with finite qα,β and pα,β , the defining

condition of the zero mode vacuum state reduces to pα,β |Ω) = 0. Such a state cannot be

normalizable and the resulting Fock space is therefore the tensor product of the Fock space

constructed from massless representation and the Hilbert space carrying a representation

of [ qα,β , pα,β ] = i , i.e. the one describing a one dimensional quantum mechanical particle.

The resulting generators of the dS group are deformed by pα,β: in the complementary

series the zero mode part of MI0 can be written as

M
(0)
I0 =

n
∑

J=1

(1, J |MI0 | 0)
1

Q0
a†1,J a0 + (0 |MI0 |1, J)

1

Q1
a†0 a1,J , (6.59)

where | 0) and |1, J) are the states in the spherical harmonic basis:

( ~ζ | 0) = S0( ~ζ ) =
1√

Vn−1
, ( ~ζ | 1, J) = S1,J( ~ζ ) =

√

n

Vn−1
ζJ , (6.60)

In terms of the redefined zero mode operators pα,β and qα,β, eq. (6.59) has a limit given by

M
(0)
I0 =

1√
n Vn

pα,β

(

a†1,I + a1,I

)

cosh α + cos β sinhα
. (6.61)

This part should be added to the generators obtained from the massless UIR of the dS

group. The dS invariance of the vacuum state leads again pα,β |Ω) = 0 , making the vacuum

state non-normalizable.

6.5 Vertex operator

In order to make the vacuum state normalizable, we compactify the scalar field on a circle of

radius L as in the two-dimensional case. The physical observables should then be invariant

under Φ → Φ + 2πL. This is the case for the vertex operator V which is a dS covariant

regularization of exp(iΦ/L) .
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As in two dimensional case, this regularization can be realized by defining V at the ori-

gin as the normal ordered exponential (5.16) and transporting with the dS transformations.

The resulting vertex operator can be expressed as

V (η, ~ξ) = exp

(

i

L
φ+(η, ~ξ)

)

exp

(

i

L
φ−(η, ~ξ)

)

exp

(

i

L
φ0(η, ~ξ)

)

×

× exp

(

1

2Vn−1L2
lim
ε→0

(

|c0(η)|2 − |c0(π
2
)|2

)

[ a0 , a†0 ]

)

, (6.62)

where φ+, φ− and φ0 are respectively creation, annihilation and zero mode part of scalar

field operator. Notice that it differs from the normal ordered exponential which is not dS

invariant. The difference is a time dependent constant given in the last factor in eq. (6.62)

and it reads explicitly

exp

[

(cosh 2α + sinh 2α cos β) (f(η) − f(π
2
)) + sinh 2α sin β (g(η) − g(π

2
))

2π Vn−2 L2

]

. (6.63)

Two-point function of the vertex operators (Ω|V †(x)V (x′)Ω) ≡ exp
(

1
L2 Gn(x;x′)

)

can now be easily calculated and expressed in terms of the limit of the massive two-point

function as

Gn(x;x′) = lim
ε→0

{

(Ω|Φε(x)Φε(x
′)Ω) − |c0(t = 0)|2

Vn−1
[ a0 , a†0 ]

}

. (6.64)

Using the two-point function (6.28) and the zero mode (6.52), the divergent part cancels

and we get a finite limit

2π Vn−2 Gn(x;x′) = sinh2 α Gn(x;x′) + cosh2 αGn(x̄; x̄′)

+ 2Re
[

sinhα cosh α e−iβ Gn(x; x̄′)
]

, (6.65)

where the dS invariant function Gn(x;x′) is defined by

Gn(x;x′) =
∂

∂ε
2F1

(

−ε + n − 1 , ε ;
n

2
;

1 + Z̃(x;x′)

2

)∣

∣

∣

∣

∣

ε=0

+ψ

(

n − 1

2

)

−ψ
(n

2

)

. (6.66)

Notice that the procedure we propose results in the extraction from the massive two point

function of its divergent part. In fact, (Ω|Φε(x)Φε(x
′)Ω) behaves in the massless limit as

cosh 2α + sinh 2α cos β

2π Vn−2

(

1

ε
+ ψ(1) − ψ(n − 1) − ψ

(

n − 1

2

)

+ ψ
(n

2

)

)

+ Gn(x;x′) .

(6.67)

The function Gn(x;x′) = f(Z(x;x′)) can be determined from the differential equation

satisfied by 2F1(−ε + n − 1 , ε ; n/2 ; (1 + Z̃(x;x′))/2) which results in

(1 − x2) f ′′(x) − n x f ′(x) − (n − 1) = 0 , (6.68)

and its explicit expression is given in appendix C.
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An interesting and unexpected property of Gn is its behavior for large |Z|, that

is in the far infrared region in the flat sections. In this limit eq. (6.68) simplifies to

(xnf ′)′ = −(n − 1)xn−2 and its solution for large x is − log x independently of n. The

massless two-point function has thus a logarithmic divergence for all spacetime dimensions

similar to the two dimensional flat infrared divergence. This IR divergence was found

in [24] by considering the BD massless two-point function and disregarding its divergent

part. Here, this regularization arises naturally in a dS invariant way and is due to the com-

pactification of the scalar on a circle. In this respect, this IR divergence was argued to cause

a restoration of a breakdown of symmetry [24] similarly to what happens in two dimensions

(For discussions on IR divergence for the graviton, see e.g. [28]). The two-point function of

the vertex operators can be used to exhibit this symmetry restoration. From our previous

analysis for x and x′ separated by a large spacelike distance d(x;x′) = cosh−1 Z(x;x′), we

have

(Ω|V †(x)V (x′)Ω) ∼ Z(x;x′)
− cosh 2α+sinh 2α cos β

2π Vn−2 L2 , (6.69)

which tends to zero. This is a signal of large quantum fluctuations which restore a broken

symmetry.

A. Intertwiner and Field coefficients in spherical harmonic basis

In this subsection, we derive the intertwiner QL and the field coefficient cL(t) in the spheri-

cal harmonic basis. Many properties of special functions used in the following can be found

in [29, 30]

At first, we concentrate on the case of the intertwiner operator. From the n-dimensional

addition theorem which reads

N(n,L)
∑

k=1

( ~ξ |L, k)(L, k| ~ζ ) =

N(n,L)
∑

k=1

SL,k(~ξ)SL,k(~ζ) =
2L + n − 2

(n − 2)Vn−1
C

n−2
2

L (~ζ·~ξ) , (A.1)

with C
n−2

2
L the Gegenbauer polynomial, we get the relation between the intertwiners in the

position basis and in the spherical harmonic basis:

Q(~ζ·~ζ′) =
∑

L,k

QL SL,k(~ζ)SL,k(~ζ′) =
∑

L

QL
2L + n − 2

(n − 2)Vn−1
C

n−2
2

L (~ζ·~ζ′) . (A.2)

Using the orthogonality of the Gegenbauer polynomials, we express QL as

QL = (4π)
n−2

2
Γ(L + 1)Γ(n−2

2 )

Γ(L + n − 2)

∫ 1

−1
dx (1 − x2)

n−3
2 C

n−2
2

L (x)Q(x) . (A.3)

On the other hand, the Gegenbauer polynomials are given by

C
n−2

2
L (x) =

(−1)L π
1
2 2−L−n+3 Γ(L + n − 2)

Γ(L + n−1
2 ) Γ(L + 1)Γ(n−2

2 )
(1 − x2)−

n−3
2

(

d

dx

)L

(1 − x2)L+ n−3
2 . (A.4)
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Using the expression of Q(~ζ·~ζ′) in eq. (6.8) and applying an integration by part, we get

QL = Q0
Γ(s + n−1

2 ) Γ(−s + n−1
2 + L)

2s+ n−3
2

+LΓ(s) Γ(L + n−1
2 ) Γ(−s + n−1

2 )

∫ 1

−1
dx (1 − x)s−

n−1
2

−L(1 − x2)L+ n−3
2 .

(A.5)

Performing the integral we get an expression of QL which coincides eq. (6.11).

The coefficient of field operator cL(t) can also be obtained in a similar manner. We

first decompose Ψt, ~ξ ( ~ζ ) in the Gegenbauer polynomials as

Ψt,~ζ(~ξ) =
∑

L,k

( ~ζ |L, k)(L, k|Φ(t, ~ξ )Ω) =
∑

L,k

cL(t)SL,k(~ζ)SL,k(~ξ)

=
∑

L

cL(t)
2L + n − 2

(n − 2)Vn−1
C

n−2
2

L (~ζ·~ξ) , (A.6)

and using their orthogonality, we express cL(t) as an integral:

cL(t) = (4π)
n−2

2
Γ(L + 1)Γ(n−2

2 )

Γ(L + n − 2)

∫ 1

−1
dx (1 − x2)

n−3
2 C

n−2
2

L (x)Ψ(t, x) , (A.7)

where Ψ(t, x) = C (cosh t x + sinh t − iǫ)−s−n−1
2 + D (cosh t x + sinh t + iǫ)−s−n−1

2 . This

integral can be again evaluated easily using eq. (A.4) and the integral representation of the

hypergeometric function. Finally we get

cL(t) =
π

n+2
2

Γ
(

L + n
2

)

(

cosh t

2

)L

e(s+
n−1

2
+L)t × (A.8)

×
[

D e−iπ(s+ n−1
2 )

2F1

(

L +
n − 1

2
, L +

n − 1

2
+ s ; 2L + n − 1 ; 1 + e2t + iǫ

)

+

+ C eiπ(s+ n−1
2 )

2F1

(

L +
n − 1

2
, L +

n − 1

2
+ s ; 2L + n − 1 ; 1 + e2t − iǫ

)

]

.

Since the hypergeometric functions 2F1(a, b; c; z) have a branch cut on Arg[z − 1] = 0 , the

above two hypergeometric functions with different iǫ prescriptions are independent. Using

the transformation identities between the hypergeometric and the associated Legendre

functions, the above expression of cL(t) can be written also as eq. (6.39).

In the subsection 6.3, we used the asymptotic behavior of cL(t) in order to define in and

out vacua. These asymptotic behaviors can be obtained from those of the hypergeometric

function. We concentrate on the large past case, t → −∞ and the large future case can be

done in a similar manner. When s is not a integer and in the interval ]−m−1,−m[ , the
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asymptotic behavior of the hypergeometric function is given by

2F1

(

L +
n − 1

2
, L +

n − 1

2
+ s ; 2L + n − 1 ; 1 + e2t − iǫ

)

=
Γ(2L + n − 1) Γ(−s)

Γ(L + n−1
2 ) Γ(L + n−1

2 − s)

(

m
∑

l=0

(L + n1
2 )(l)(L + n−1

2 + s)(l)

(1 + s)(l) l!
(−1)le2lt +

+
Γ(s) Γ(L + n−1

2 − s)

Γ(−s) Γ(L + n−1
2 + s)

e−iπse−2st + o(e−2st)

)

= p(e2t)

(

1 +
Γ(s) Γ(L + n−1

2 − s)

Γ(−s) Γ(L + n−1
2 + s)

e−iπse−2st + o(e−2st)

)

, (A.9)

where p(e2t) is a real polynomial of order m in e2t and given by

p(e2t) =
Γ(2L + n − 1) Γ(−s)

Γ(L + n−1
2 ) Γ(L + n−1

2 − s)

m
∑

l=0

(L + n−1
2 )(l)(L + n−1

2 + s)(l)

(1 + s)(l) l!
(−1)le2lt . (A.10)

Combining the two hypergeometric functions with coefficients C and D, we get the asymp-

totic behavior of cL(t) as

cL(t) =
π

n+2
2

4LΓ
(

L + n
2

)

(

D e−iπ(s+ n−1
2 ) + C eiπ(s+ n−1

2 )
)

p(e2t) e(s+ n−1
2 )t × (A.11)

×
(

1+
D e−iπ n−1

2 +C eiπ n−1
2

D e−iπ(s+ n−1
2 )+C eiπ(s+n−1

2 )

Γ(s) Γ(L+ n−1
2 − s)

Γ(−s) Γ(L + n−1
2 + s)

e−iπse−2st + o(e−2st)

)

,

this gives eq. (6.40) after using eq. (6.41) and defining P (e2t) as p(e2t) times the overall

constant of cL(t) in eq. (A.9).

For the case of integer s, the expression (A.9) is replaced by

Γ(2L+n−1)

Γ(L + n−1
2 )

[

Γ(−s)

Γ(L + n−1
2 − s)

−s−1
∑

l=0

(L + n−1
2 )(l)(L+ n−1

2 +s)(l)

(1 + s)(l) l!
(−1)le2lt (A.12)

− e−2st

Γ(L + n−1
2 +s) Γ(1 − s)

{

2t+iπ−ψ(1)−ψ(1 − s)+ψ(L+ n−1
2

) + ψ(L+ n−1
2
−s)

}

]

= r(e2t)

(

1 − Γ(L + n−1
2 − s)

Γ(L + n−1
2 + s)

e−2st

Γ(−s) Γ(1 − s)
×

×
{

iπ − ψ(1) − ψ(1 − s) + ψ(L + n−1
2

) + ψ(L + n−1
2

− s)
}

)

,

where r(e2t) is given by

r(e2t) =
Γ(2L + n − 1)

Γ(L + n−1
2 )

Γ(−s)

Γ(L + n−1
2 − s)

(−s−1
∑

l=0

(L + n−1
2 )(l)(L + n−1

2 + s)(l)

(1 + s)(l) l!
(−1)le2lt

− 2Γ(L + n−1
2 − s)

Γ(L + n−1
2 + s) Γ(−s) Γ(1 − s)

e−2st t

)

.
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Combining again two hypergeometric functions with C and D, the asymptotic behavior of

cL(t) with integer value of s is given by eq. (6.49), where R(e2t) is r(e2t) times the overall

constant in eq. (A.9).

B. Wightman function

The two-point function in n-dimensions given in eq. (6.27) reads

(Ω|Φ(t, ~ξ )Φ(t′, ~ξ
′)Ω) = Q0

Γ
(

s + n−1
2

)

(2π)
n−1

2 2s Γ(s)
× (B.1)

×
∫

Sn−1×Sn−1
dn−1Ω( ~ζ ) dn−1Ω( ~ζ

′)
(

1−~ζ · ~ζ ′
)s−n−1

2
Ψ∗

t, ~ξ
( ~ζ )Ψt′, ~ξ

′( ~ζ
′) ,

with Ψt, ~ξ ( ~ζ) given before. Each term with coefficients |C|2, |D|2, C∗D and D∗C can be

written in terms of a single function Fn with appropriate arguments as

(Ω|Φ(t, ~ξ )Φ(t′, ~ξ
′)Ω) = |C|2 Fn(x;x′) + |D|2 Fn(x̄; x̄′) + (B.2)

+ C∗D eiπ(−s−n−1
2 ) Fn(x; x̄′) + D∗C e−iπ(−s−n−1

2 ) Fn(x̄;x′) ,

with

Fn(t, ~ξ ; t′, ~ξ
′) = Q0

Γ
(

s + n−1
2

)

2s (2π)
n−1

2 Γ(s)
× (B.3)

×
∫

Sn−1

∫

Sn−1

dn−1Ω(~ζ) dn−1Ω(~ζ ′)
(

1 − ~ζ · ~ζ ′
)s−n−1

2 ×

×
(

cosh t ~ζ · ~ξ + sinh t + iǫ
)−s−n−1

2
(

cosh t′ ~ζ ′ · ~ξ′ + sinh t′ − iǫ
)−s−n−1

2
.

Using the following integral obtained in I:

∫

dn−1Ω(~ζ)
(

cosh t ~ζ · ~ξ + sinh t + iǫ
)s−n−1

2
(

cosh t′ ~ζ · ~ξ′ + sinh t′ − iǫ
)−s−n−1

2
(B.4)

= eiπs 2π
n
2

Γ(n
2 )

2F1

(

iµ +
n − 1

2
,−iµ +

n − 1

2
;
n

2
;
1 + Z̃(t, ~ξ; t′, ~ξ′)

2

)

,

where

Z̃(t, ~ξ; t′, ~ξ′) = cosh t cosh t′ ~ξ · ~ξ′ − sinh t sinh t′ + i sgn(t − t′) ǫ , (B.5)
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the integral with respect to ~ζ ′ can be expressed as a limit of hypergeometric function:
∫

Sn−1

dn−1Ω(~ζ ′)
(

1 − ~ζ · ~ζ ′
)s−n−1

2
(

cosh t′ ~ζ ′ · ~ξ′ + sinh t′ − iǫ
)−s−n−1

2

= (e−iπ)s−
n−1

2 lim
t→−∞

{

(2et)s−
n−1

2

∫

Sn−1

dn−1Ω(~ζ ′)
(

cosh t ~ζ · ~ζ ′ + sinh t + iǫ
)s−n−1

2 ×

×
(

cosh t′ ~ζ ′ · ~ξ′ + sinh t′ − iǫ
)−s−n−1

2

}

= (e−iπ)s−
n−1

2 lim
t→−∞

{

(2et)s−
n−1

2 eiπs 2π
n
2

Γ(n
2 )

×

×2F1

(

s +
n − 1

2
,−s +

n − 1

2
;
n

2
;
1 + Z̃(t, ~ζ; t′, ξ′)

2

)}

. (B.6)

From the asymptotic behavior of hypergeometric function:

2F1

(

s +
n − 1

2
,−s +

n − 1

2
;
n

2
;
1 + x

2

)

≈
|x|→∞

Γ
(

n
2

)

Γ(2s)

Γ
(

s + n−1
2

)

Γ
(

s + 1
2

)

(

−x

2

)s−n−1
2

+
Γ

(

n
2

)

Γ(−2s)

Γ
(

−s + n−1
2

)

Γ
(

−s + 1
2

)

(

−x

2

)−s−n−1
2

.

(B.7)

we get the integral as

eiπs 2s (2π)
n−1

2 Γ(s)

Γ
(

s + n−1
2

)

(

cosh t′ ~ζ · ~ξ′ + sinh t′ − iǫ
)s−n−1

2
, (B.8)

Finally, the integral with respect to ~ζ gives

Fn(t, ~ξ; t′, ~ξ′) = Q0 eiπs

∫

Sn−1

dn−1Ω(~ζ)
(

cosh t ~ζ · ~ξ + sinh t + iǫ
)−s−n−1

2 ×

×
(

cosh t′ ~ζ · ~ξ′ + sinh t′ − iǫ
)s−n−1

2

= Q0 Vn−1 2F1

(

s +
n − 1

2
,−s +

n − 1

2
;
n

2
;
1 + Z̃

2

)

. (B.9)

C. Explicit expression of the two-point function for vertex operators

The two-point function of vertex operators, (Ω|V †(x)V (x′)Ω) ≡ exp
(

1
L2 Gn(x;x′)

)

was

given by eq. (6.65) and eq. (6.66). An explicit expression for Gn can be deduced from the

differential equation (6.68) and the boundary conditions at Z = ±1 which gives for n even:

Gn(x;x′) = − log
{

2
(

1 − Z̃(x;x′)
)}

+

n−2
2

∑

m=1

(

2−n
2

)

m

m (2 − n)m







2m

(

1 − Z̃(x;x′)
)m − 1







+

+ ψ

(

n − 1

2

)

− ψ
(n

2

)

+ ψ (1) − ψ

(

1

2

)

, (C.1)
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and for n odd:

Gn(x;x′) =
n − 1

n

(

1 − Z̃(x;x′)
)

3F2

(

1 , 1 , n ; 2 , 1 +
n

2
;

1 − Z̃(x;x′)

2

)

+ (C.2)

+
Γ

(

n
2

)

Γ
(

n
2

)

2n+1 Γ(n − 1)
Z̃(x;x′) 2F1

(

1

2
,

n

2
;

3

2
;
(

Z̃(x;x′)
)2

)

+ψ

(

n − 1

2

)

−ψ
(n

2

)

.

These two expressions have a logarithmic behavior in the IR at large |Z| .
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